摘要:在讀多寫少的環境中,有沒有一種比ReadWriteLock更快的鎖呢?有,那就是JDK1.8中新增的StampedLock! 本文分享自華為雲社區《【高併發】高併發場景下一種比讀寫鎖更快的鎖》,作者: 冰 河。 什麼是StampedLock? ReadWriteLock鎖允許多個線程同時讀取共 ...
摘要:在讀多寫少的環境中,有沒有一種比ReadWriteLock更快的鎖呢?有,那就是JDK1.8中新增的StampedLock!
本文分享自華為雲社區《【高併發】高併發場景下一種比讀寫鎖更快的鎖》,作者: 冰 河。
什麼是StampedLock?
ReadWriteLock鎖允許多個線程同時讀取共用變數,但是在讀取共用變數的時候,不允許另外的線程多共用變數進行寫操作,更多的適合於讀多寫少的環境中。那麼,在讀多寫少的環境中,有沒有一種比ReadWriteLock更快的鎖呢?
答案當然是有!那就是我們今天要介紹的主角——JDK1.8中新增的StampedLock!沒錯,就是它!
StampedLock與ReadWriteLock相比,在讀的過程中也允許後面的一個線程獲取寫鎖對共用變數進行寫操作,為了避免讀取的數據不一致,使用StampedLock讀取共用變數時,需要對共用變數進行是否有寫入的檢驗操作,並且這種讀是一種樂觀讀。
總之,StampedLock是一種在讀取共用變數的過程中,允許後面的一個線程獲取寫鎖對共用變數進行寫操作,使用樂觀讀避免數據不一致的問題,並且在讀多寫少的高併發環境下,比ReadWriteLock更快的一種鎖。
StampedLock三種鎖模式
這裡,我們可以簡單對比下StampedLock與ReadWriteLock,ReadWriteLock支持兩種鎖模式:一種是讀鎖,另一種是寫鎖,並且ReadWriteLock允許多個線程同時讀共用變數,在讀時,不允許寫,在寫時,不允許讀,讀和寫是互斥的,所以,ReadWriteLock中的讀鎖,更多的是指悲觀讀鎖。
StampedLock支持三種鎖模式:寫鎖、讀鎖(這裡的讀鎖指的是悲觀讀鎖)和樂觀讀(很多資料和書籍寫的是樂觀讀鎖,這裡我個人覺得更準確的是樂觀讀,為啥呢?我們繼續往下看啊)。其中,寫鎖和讀鎖與ReadWriteLock中的語義類似,允許多個線程同時獲取讀鎖,但是只允許一個線程獲取寫鎖,寫鎖和讀鎖也是互斥的。
另一個與ReadWriteLock不同的地方在於:StampedLock在獲取讀鎖或者寫鎖成功後,都會返回一個Long類型的變數,之後在釋放鎖時,需要傳入這個Long類型的變數。例如,下麵的偽代碼所示的邏輯演示了StampedLock如何獲取鎖和釋放鎖。
public class StampedLockDemo{ //創建StampedLock鎖對象 public StampedLock stampedLock = new StampedLock(); //獲取、釋放讀鎖 public void testGetAndReleaseReadLock(){ long stamp = stampedLock.readLock(); try{ //執行獲取讀鎖後的業務邏輯 }finally{ //釋放鎖 stampedLock.unlockRead(stamp); } } //獲取、釋放寫鎖 public void testGetAndReleaseWriteLock(){ long stamp = stampedLock.writeLock(); try{ //執行獲取寫鎖後的業務邏輯。 }finally{ //釋放鎖 stampedLock.unlockWrite(stamp); } } }
StampedLock支持樂觀讀,這是它比ReadWriteLock性能要好的關鍵所在。 ReadWriteLock在讀取共用變數時,所有對共用變數的寫操作都會被阻塞。而StampedLock提供的樂觀讀,在多個線程讀取共用變數時,允許一個線程對共用變數進行寫操作。
我們再來看一下JDK官方給出的StampedLock示例,如下所示。
class Point { private double x, y; private final StampedLock sl = new StampedLock(); void move(double deltaX, double deltaY) { // an exclusively locked method long stamp = sl.writeLock(); try { x += deltaX; y += deltaY; } finally { sl.unlockWrite(stamp); } } double distanceFromOrigin() { // A read-only method long stamp = sl.tryOptimisticRead(); double currentX = x, currentY = y; if (!sl.validate(stamp)) { stamp = sl.readLock(); try { currentX = x; currentY = y; } finally { sl.unlockRead(stamp); } } return Math.sqrt(currentX * currentX + currentY * currentY); } void moveIfAtOrigin(double newX, double newY) { // upgrade // Could instead start with optimistic, not read mode long stamp = sl.readLock(); try { while (x == 0.0 && y == 0.0) { long ws = sl.tryConvertToWriteLock(stamp); if (ws != 0L) { stamp = ws; x = newX; y = newY; break; } else { sl.unlockRead(stamp); stamp = sl.writeLock(); } } } finally { sl.unlock(stamp); } } }
在上述代碼中,如果在執行樂觀讀操作時,另外的線程對共用變數進行了寫操作,則會把樂觀讀升級為悲觀讀鎖,如下代碼片段所示。
double distanceFromOrigin() { // A read-only method //樂觀讀 long stamp = sl.tryOptimisticRead(); double currentX = x, currentY = y; //判斷是否有線程對變數進行了寫操作 //如果有線程對共用變數進行了寫操作 //則sl.validate(stamp)會返回false if (!sl.validate(stamp)) { //將樂觀讀升級為悲觀讀鎖 stamp = sl.readLock(); try { currentX = x; currentY = y; } finally { //釋放悲觀鎖 sl.unlockRead(stamp); } } return Math.sqrt(currentX * currentX + currentY * currentY); }
這種將樂觀讀升級為悲觀讀鎖的方式相比一直使用樂觀讀的方式更加合理,如果不升級為悲觀讀鎖,則程式會在一個迴圈中反覆執行樂觀讀操作,直到樂觀讀操作期間沒有線程執行寫操作,而在迴圈中不斷的執行樂觀讀會消耗大量的CPU資源,升級為悲觀讀鎖是更加合理的一種方式。
StampedLock實現思想
StampedLock內部是基於CLH鎖實現的,CLH是一種自旋鎖,能夠保證沒有“饑餓現象”的發生,並且能夠保證FIFO(先進先出)的服務順序。
在CLH中,鎖維護一個等待線程隊列,所有申請鎖,但是沒有成功的線程都會存入這個隊列中,每一個節點代表一個線程,保存一個標記位(locked),用於判斷當前線程是否已經釋放鎖,當locked標記位為true時, 表示獲取到鎖,當locked標記位為false時,表示成功釋放了鎖。
當一個線程試圖獲得鎖時,取得等待隊列的尾部節點作為其前序節點,並使用類似如下代碼判斷前序節點是否已經成功釋放鎖:
while (pred.locked) { //省略操作 }
只要前序節點(pred)沒有釋放鎖,則表示當前線程還不能繼續執行,因此會自旋等待;反之,如果前序線程已經釋放鎖,則當前線程可以繼續執行。
釋放鎖時,也遵循這個邏輯,線程會將自身節點的locked位置標記為false,後續等待的線程就能繼續執行了,也就是已經釋放了鎖。
StampedLock的實現思想總體來說,還是比較簡單的,這裡就不展開講了。
StampedLock的註意事項
在讀多寫少的高併發環境下,StampedLock的性能確實不錯,但是它不能夠完全取代ReadWriteLock。在使用的時候,也需要特別註意以下幾個方面。
StampedLock不支持重入
沒錯,StampedLock是不支持重入的,也就是說,在使用StampedLock時,不能嵌套使用,這點在使用時要特別註意。
StampedLock不支持條件變數
第二個需要註意的是就是StampedLock不支持條件變數,無論是讀鎖還是寫鎖,都不支持條件變數。
StampedLock使用不當會導致CPU飆升
這點也是最重要的一點,在使用時需要特別註意:如果某個線程阻塞在StampedLock的readLock()或者writeLock()方法上時,此時調用阻塞線程的interrupt()方法中斷線程,會導致CPU飆升到100%。例如,下麵的代碼所示。
public void testStampedLock() throws Exception{ final StampedLock lock = new StampedLock(); Thread thread01 = new Thread(()->{ // 獲取寫鎖 lock.writeLock(); // 永遠阻塞在此處,不釋放寫鎖 LockSupport.park(); }); thread01.start(); // 保證thread01獲取寫鎖 Thread.sleep(100); Thread thread02 = new Thread(()-> //阻塞在悲觀讀鎖 lock.readLock() ); thread02.start(); // 保證T2阻塞在讀鎖 Thread.sleep(100); //中斷線程thread02 //會導致線程thread02所在CPU飆升 thread02.interrupt(); thread02.join(); }
運行上面的程式,會導致thread02線程所在的CPU飆升到100%。
這裡,有很多小伙伴不太明白為啥LockSupport.park();會導致thread01會永遠阻塞。這裡,冰河為你畫了一張線程的生命周期圖,如下所示。
這下明白了吧?線上程的生命周期中,有幾個重要的狀態需要說明一下。
- NEW:初始狀態,線程被構建,但是還沒有調用start()方法。
- RUNNABLE:可運行狀態,可運行狀態可以包括:運行中狀態和就緒狀態。
- BLOCKED:阻塞狀態,處於這個狀態的線程需要等待其他線程釋放鎖或者等待進入synchronized。
- WAITING:表示等待狀態,處於該狀態的線程需要等待其他線程對其進行通知或中斷等操作,進而進入下一個狀態。
- TIME_WAITING:超時等待狀態。可以在一定的時間自行返回。
- TERMINATED:終止狀態,當前線程執行完畢。
看完這個線程的生命周期圖,知道為啥調用LockSupport.park();會使thread02阻塞了吧?
所以,在使用StampedLock時,一定要註意避免線程所在的CPU飆升的問題。那如何避免呢?
那就是使用StampedLock的readLock()方法或者讀鎖和使用writeLock()方法獲取寫鎖時,一定不要調用線程的中斷方法來中斷線程,如果不可避免的要中斷線程的話,一定要用StampedLock的readLockInterruptibly()方法獲取可中斷的讀鎖和使用StampedLock的writeLockInterruptibly()方法獲取可中斷的悲觀寫鎖。
最後,對於StampedLock的使用,JDK官方給出的StampedLock示例本身就是一個最佳實踐了,小伙伴們可以多看看JDK官方給出的StampedLock示例,多多體會下StampedLock的使用方式和背後原理與核心思想。